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The problem of flow from a large reservoir through a circular orifice is formulated 
by considering the velocity potential and Stokes’s stream function as the inde- 
pendent variables and the radial and axial dimensions as the dependen% variables, 
and a finite difference solution is obtained to the resulting boundary-value 
problem. This inverse formulation has the advantage over a finite difference 
solution in the physical plane that the region of flow is rectangular and conse- 
quently well adapted for minimum logic in programming a digital computer. 
The inverse finite difference solution is more readily obtained than a comparable 
solution in the physical plane, even though the inverse partial differential 
equation and associated boundary conditions are non-linear . The results from 
the inverse finite difference solution are in close agreement with other most 
recent results from approximate solutions to this problem. 

The inverse method of solution is applicable to other free streamline as well 
as confined axisymmetric potential flow problems. The essential difference in 
other problems will be in the boundary c0nditions.t 

1. Introduction 
A class of problems of practical importance are those involving jets and 

cavities. In this class of problems viscous forces are generally confined to small 
regions of flow, and consequently are of minor importance, so that potential 
theory gives results adequate for most applications. Because of the close agree- 
ment between theoretical results and experimental measurements this class of 
potential fiaee streamline problems has demonstrated the practical value of 
potential flow theory. 

Theoretical hydraulicians, however, have often been frustrated because the 
available analytic methods generally require that the fluid be assumed weightless 
(i.e. the acceleration of gravity is zero), and are restricted t o  problems of plane 
flow. In  fact exact solutions to axially symmetric potential flows with free surfaces 
have proved to be so formidable that researchers have been forced to obtain 
approximate solutions by numerical techniques, or other approximate methods 
even though such problems can be described by a two-dimensional co-ordinate 
system. 

Potential Flow. 
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The method described herein has been applied to the classical problem of 
axisymmetric, steady, potential flow from an infinite tank through a circular 
orifice. The approach is well adapted for obtaining approximate solutions to 
a variety of free streamline and confined axisymmetric potential flows. This 
particular problem has been selected because a considerable amount of work 
has been devoted to obtaining important parameters of the flow, such as the 
contraction coefficient, against which the results of the inverse finite difference 
solution can be compared. Furthermore, the nature of this problem will cause 
larger accumulative errors than those in many other axisymmetric problems. 
Consequently similar solutions of problems with short free streamlines, and 
for which the formulation does not involve approximating assumptions, would 
be expected to give accuracies at least as good as those obtained in the solution 
to this problem. 

The first known approximate solution to the problem of flow from a reservoir 
through a circular orifice was given by Trefftz (1916): he formulated the problem 
in terms of a Fredholm integral equation and determined the position of the 
free streamline by trial and error. Trefftz’s results indicated that the contraction 
coefficient is 0.61, very close to that for the plane slot with a contraction coefficient 
of 0.61 1. Later Southwell & Vaisey (1948) and also Rouse & Abul-Fetouch (1950) 
verified this coefficient with solutions by the relaxation method in the physical 
plane. For many the problem was considered adequately solved until Garabedian 
(1956) obtained an approximate solution by an ingenious dimensional perturba- 
tion scheme, which indicated the contraction coefficient equals 0.58. Hunt (1968) 
numerically solved the integral equation resulting from the surface distribution 
of vorticity, and substantiated Garabedian’s result (that the contraction co- 
efficient for axisymmetric potential flow from a reservoir through an orifice 
equals 0.58, somewhat smaller than the equivalent coefficient for the plane slot). 

In  this study the problem of potential flow from a reservoir through a circular 
orifice is formulated in the plane defined by the velocity potential function 6, 
and Stokes stream function +, for the radial and axial co-ordinates r and z. 
The solution to the resulting non-linear partial differential equation for ~ ( 6 ,  @) 
with associated boundary conditions is obtained by finite difference methods, 
and z ( 6 ,  $) subsequently obtained from the solution r(q5,@) by numerical 
differentiation and integration. A major advantage of this approach over finite 
difference (or relaxation) solutions in the physical plane is that the free surface 
boundary becomes straight with its position defined by the total discharge. The 
same approach has been successfully applied t o  axisymmetric flows through 
porous media (see Jeppson 1968). While the writer is not aware of others having 
used the general inverse approach to problems with axial symmetry, several 
investigatorshave used this or a similar formulation for two-dimensional potential 
flow problems (see Thom & Apelt 1961; Stanitz 1953; Markland 1965; Cassidy 
1965 and Jeppson 1969). 
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2. Formulation 
The partial differential equations which apply to r and z in the $$ plane can 

be obtained &om implicit function theory. If 4 = F(r,  z )  and $ = G(r, z), then 
r and z must be functions of q5 and $, such that 

in which J is the Jacobian determinant 

The needed equations for q5 and @ are obtained from the condition of irrota- 
tionality and the continuity equation, giving the following equations for the 
velocity components in the radial and axial directions respectively : 

and 

Substituting from (1) into (2) and (3) respectively gives 

az 1 ar 
q=rq7 

and 

(3) 

(4) 

Equations (4) and (5) can be integrated to obtain z($,$)  from a solution 
r($,  $). The equations are 

and (7) 

in which the subscripts of the integral sign denote $ and @ equd constant lines 
respectively. 

Differentiating (4) with respect to # and ( 5 )  with respect to @, and combining 
the results, leads to the following inverse equation for r(4,  @) : 

An equation exclusively for z(q5, @) cannot be obtained. 
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Since (8) is an elliptic equation, the approach used in obtaining a solution is to 
establish boundary conditions on all boundaries enclosing the region of flow, and 
solve the boundary-value problem by finite difference methods. Subsequently 
to obtaining the solution for Y(#,$) at each grid point of the finite difference 
mesh, (6) and (7 )  are solved numerically to obtain z($,$)  at the same mesh 
points. The solution in this form is well adapted for plotting the flownet, since 
the radial and axial co-ordinates are given for each intersection of streamlines 
with equi-potential lines. Furthermore, other items of interest such as local 
velocity, pressure, velocity gradients and pressure gradients are readily obtained. 

FIGURE 1. Formulation of axially symmetric flow of an ideal, weightless 
fluid from a large reservoir through a circular orifice. 

The formulation of the boundary-value problem for r($,  @) which describes 
flow from a large reservoir through a circular orifice is shown in figure 1. The 
boundary conditions for each boundary of the region are given in figure 1 by an 
equation near that boundary. In  this formulation the assumption is made that 
a gravitational field does not exist and, consequently, that the velocity along the 
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free streamline (i.e. boundary @ t o  @ on figure 1) is constant. For this boundary 
the condition is 

in which V, (a constant which may be assigned a value of 1 without loss of 
generality) is the velocity along the free stream line. Equation (9) can be derived 
by expressing the right-hand sides of (1) and the Jacobian J in terms of the 
velocity and angle of the direction of flow, and then eliminating the angle by 
combining the equations. 

It should be noted that this boundary condition can readily be altered to  
account for the presence of a gravitational field. If gravity is present, the dis- 
charge must be in the vertical direction to maintain axial symmetry, and the 
velocity in (9) is a function of the axial co-ordinate given by 

v = (2g (H-x) )3 ,  (10) 
in which H is the total fluid head. 

Since the dependent variable z also occurs in the boundary condition when 
gravity is considered, a simultaneous solution of boundary-value problems for 
both r(#,q+) and z(#,q+) must be accomplished. While this case has not been 
investigated for this problem, it appears that the approach used for obtaining 
finite difference solutions to steady state seepage from ponds through porous 
media should be applicable (see Jeppson 1968). 

The boundary condition within the reservoir denoted by @ to @ in figure 1 is 
obtained by noting that a large distance within the reservoir the flow pattern 
will be very similar to that for a three-dimensional sink located at  the orifice 
centre. The $s and $s shown in the equation for this condition represent the 
potential and stream functions for a sink and as such are different from # and $ 
of the co-ordinate system. By selecting unity as the strength of this sink, $s goes 
from a value of zero at  @ to 1 at 0. The value of #s is evaluated from the change 
in the potential function from @ to @ from 

in which r, is the radius of the orifice opening which may be taken equal to unity, 
N34 and are the number of grid lines used in the finite difference solution, 
which is discussed later, between @ to @ and @ to @ respectively. While this 
condition is only approximate, it can be made as good as desired by taking this 
boundary far enough within the reservoir and can be justified in light of the 
approxamite nature of the entire solution. All other boundary conditions are 
obvious. 

It should be noted that the formulation in the $@ plane of the problem with 
a pipe preceding the orifice plate is a simple variation of that given in figure 1. 

3. Finite differences 
By finite difference methods the continuous dependent variable is replaced 

by discrete values at  mesh points of a grid network imposed throughout the 
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region of flow. The finite difference solution results upon solving the system 
of equations which ‘link’ the discrete values of the dependent variable at  adjacent 
mesh points. The system of equations arises from applying a finite difference 
operator, which is developed from the differential equation, a t  all mesh points. 

The fmite difference operator for (8), which has been used, can be obtained by 
approximating the derivatives by second-order central differences. After some 
algebraic manipulation, and letting A$ = A@, the finite difference operator can 
be written as a fourth-degree polynomial in terms of the value of r at the mesh 
point in question: 

w, ~ 1 1 3  
r ( l ,  J +  l )+r ( I ,  J -  1) mv, J ) I  = ~ ) 1 4 -  2 

[Y(I, J + 1) - ~(1, J - I)]’ 
+[1- 8 

[ r ( I + l , J ) - r ( I -  1 , 4 1 2  
~- = 0. ‘ ( I +  ’, J ,  +r(’- 

r(l, J )  + 
_ _ _  _________ 

2 8 

In (12) the index I increases with q5, and J with @, such that 4 = ( I  - 1) A$ 
and $ = ( J -  1)Ag .  

The non-linearities in (8) cause the finite difference operator to be implicit, 
i.e. (12) cannot be solved explicitly for the value at  the mesh point r ( I ,  J )  under 
the assumption that the values a t  the surrounding mesh points are known. 
Therefore, methods such as the Gauss-Seidel iterative method with an over- 
relaxation factor (successive over-relaxation, see Forsythe & Wasow 1960), must 
be modified. In  obtaining the solution to the system of equations denoted by (12), 
the successive over-relaxation method has been modified by what will be referred 
to as a ‘Newton-Raphson inner iteration’ in order to obtain the value of r ( I ,  J )  
at each mesh point which satisfies (12). The term ‘inner iteration’ distinguishes 
it from the Gauss-Seidel outer iteration, which sweeps across the mesh points 
adjusting the values to satisfy the finite difference operator continuously, until 
the change in the field values between consecutive sweeps (iterations) is less 
than some prescribed error. The method of solution can be described by the two 
iterative equations. 

(13) &+‘)(I, J )  = #)( I ,  J )  - w[Y%(I, J )  -dk ) ( I ,  4 1 ,  

and 

in which the superscripts k and m denote the iteration number, r%(I, J )  is the 
value supplied through the Newton-Raphson iterative (14) (to obtain a root 
for f[r,(I, J ) ] ,  the function for the finite difference operator (12)), and w is the 
over-relaxation factor (a value w = 1-55 was used to obtain the solution presented 
later). The Gauss-Seidel iteration is given by (13). 

For those boundaries for which values of r are not fixed, i.e. @ to @, @ to 0 
and (TJ to @ on figure 1, a finite difference operator must be developed so these 
values become part of the unknowns in the system of equations for which a 
solution is sought. For the normal derivative conditions on boundaries @ to @ 
and 0 to @ the operator is (12), with the value of r at the image grid point just 
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outside the boundary set equal to the value of r at the mesh point just inside the 
boundary. 

The finite difference operator for the boundary condition of (9) (boundary 
@ to 0) is obtained by approximating the derivatives by second-order central 
differences and combining with (12) to eliminate the value at  the grid point 
outside the region of flow. The operator is 

--r(1- 1 ,N)I2 - -  :;) = 0 ’ 

in which a = A$ = A$ is the spacing of the finite difference mesh, and N denotes 
the J index corresponding to the free streamline boundary. 

In the application of (15) difficulty frequently occurs during the process of 
obtaining the finite difference solution because the argument of the square root 
becomes negative. When this occurs the expedient has been used to set the argu- 
ment equal to zero, solve (15) for r(1, N )  and continue the iteration in hopes 
that the difficulty will disappear as the field becomes settled. This expedient 
has been successful for the problem of flow from a circular orifice. 

Since the discharge is part of the solution and the specification of the free 
streamline velocity, the value of the mesh spacing cannot be specified. The value 
of the mesh spacing a in (15) has been determined after each outer iteration by 
computing the discharge from the orifice by multiplying the specified velocity V, 
by the area of the jet at  section @ to @ on figure 1. Since the radius at  this 
section depends upon the cumulative effect of applying (15) along the free 
streamline, convergence to the correct radius is very slow. Experience gained 
from several tentative solutions obtained during the process of debugging the 
computer program indicates that convergence does occur fast enough to be 
practical if a coarse enough mesh is used. The approach, therefore, has been to 
use a coarser mesh to establish the final radius at  point 0 on figure 1, before 
progressively obtaining the solutions for finer meshes. 

A drawback of the method is that multiple roots satisfy the finite difference 
operator. To ensure that the Newton-Raphson iteration always selects the proper 
root requires that the initialization of the field values be reasonably good. It is 
difficult to define how good the initialization must be to ensure convergence 
because it no doubt depends upon the problem, the over-relaxation factor and 
other factors. An initialization of zeros, for example, would not result in a solution. 

4. Results and discussion 
The portion of the flownet beyond the circular orifice resulting from the 

solution is shown in figure 2. As mentioned earlier, since the solution consists of 
values for r and x at the intersection of each streamline and equi-potential line, 
a flownet is readily obtained by connecting consecutive co-ordinates with 
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smooth curves. The flownet on figure 2 was drawn by a Calcomp plotter which 
draws essentially straight lines between consecutively supplied co-ordinates with 
a resolution of 0.005 in. Particularly near the centre-line a more pleasing appear- 
ance would result by connecting consecutive co-ordinates with smooth curves. 
The solution required approximately 3 min of UNIVAC 1108 execution time. 

The location of the free streamlines agrees reasonably well along the entire 
length with Hunt’s results, as can be seen in table 1.  The free streamline given 
by this solution contracts slightly more adjacent to the orifice than Hunt’s 

e, 
Axial distance, z 

FIGURE 2. Flownet of jet issuing from orifice 
resulting from finite difference solution. 

0.00 
0.0125 
0-0400 
0.0813 
0.1400 
0.1975 
0.2725 
0.3575 
0.4588 
0.5700 
0.6950 
0.8188 
0.9438 
1.0713 
1.2000 

1.000 
0.971 
0-938 
0.905 
0.873 
0.850 
0.829 
0.813 
0.799 
0.788 
0.780 
0.774 
0.770 
0.767 
0.765 

1.000 
0,962 
0,933 
0.902 
0.873 
0.851 
0.831 
0.813 
0.798 
0.786 
0.776 
0.769 
0.765 
0.763 
0.762 

TABLE 1. Comparison of co-ordinates along free streamline 



Flow from a circular ori$ce 223 

calculations. Also, the final radius given in table 1 is slightly less than Hunt's. 
This latter difference might well be the result of applying condition for uniform 
flow across the section 0 to @ on figure 1, which is exact only at  downstream 
infinity. Since an increase in the length of jet included in the region for which 
the solution is obtained causes a corresponding increase in the computational 
effort required, it is not practical to expand the region much beyond that given 
in figure 2 .  

A further observation made during debug runs on the computer is that the 
position of the free streamline is quite insensitive to how far the boundary @ to 
@) on figure l.is taken within the reservoir, provided it is several lengths of orifice 
opening within. The solution given in figure 2 placed this boundary approximately 
10 lengths of orifice opening within the reservoir. 

The solution is in an ideal form for determining other quantities of interest, 
such as local velocities, pressures or gradients throughout the flow field. Par- 
ticularly, for the problem under investigation, the method has the disadvantage 
that the outcome of the solution depends heavily upon the cumulative errors 
resulting from applying the finite difference operator along boundary @ to @ 
in figure 1. Even with this dependency the accuracy achievable appears to be 
acceptable for many engineering applications. The disadvantage appears minor 
in light of the applicability of the approach to a wide variety of other axi- 
symmetric potential flow problems, particularly since for other problems the 
accuracy of the solution will be less dependent on such cumulative effects. 
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